846 research outputs found

    Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    Get PDF
    In April 2015, an ice-tethered conductivity&ndash;temperature&ndash;depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22&ndash;24 April, when northerly winds exceeded 15 m s<sup>−1</sup>. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0&ndash;40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ∼&thinsp;4 days. Although current velocities did not exceed 5 cm s<sup>−1</sup>, the enhanced circulation during the storm caused cold turbid intrusions at 75&ndash;95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ∼&thinsp;40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. <br><br> Our findings provide evidence that shelf&ndash;basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus

    High export of dissolved silica from the Greenland Ice Sheet

    Get PDF
    Silica is an essential element for marine life and plays a key role in the biogeochemistry of the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets. Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr−1. When the silicate-rich meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms relative to other phytoplankton groups

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    FungiDB: an integrated functional genomics database for fungi

    Get PDF
    FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation

    Splenic artery embolization in a woman with bleeding gastric varices and splenic vein thrombosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gastric variceal bleeding due to splenic vein thrombosis is a life-threatening situation and is often difficult to manage by endoscopy. In the worst cases, an emergency splenectomy may be required to stop variceal bleeding.</p> <p>Case presentation</p> <p>We report the case of a 60-year-old Caucasian woman with bleeding gastric varices secondary to splenic vein thrombosis treated by splenic artery embolization. Successful embolization was performed by depositing coils into the splenic artery resulting in cessation of variceal bleeding. After embolization there was no recurrence of bleeding.</p> <p>Conclusion</p> <p>Splenic artery embolization can be an effective and definite treatment for variceal bleeding secondary to splenic vein thrombosis.</p

    PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation

    Get PDF
    PROTEUS2 is a web server designed to support comprehensive protein structure prediction and structure-based annotation. PROTEUS2 accepts either single sequences (for directed studies) or multiple sequences (for whole proteome annotation) and predicts the secondary and, if possible, tertiary structure of the query protein(s). Unlike most other tools or servers, PROTEUS2 bundles signal peptide identification, transmembrane helix prediction, transmembrane β-strand prediction, secondary structure prediction (for soluble proteins) and homology modeling (i.e. 3D structure generation) into a single prediction pipeline. Using a combination of progressive multi-sequence alignment, structure-based mapping, hidden Markov models, multi-component neural nets and up-to-date databases of known secondary structure assignments, PROTEUS is able to achieve among the highest reported levels of predictive accuracy for signal peptides (Q2 = 94%), membrane spanning helices (Q2 = 87%) and secondary structure (Q3 score of 81.3%). PROTEUS2's homology modeling services also provide high quality 3D models that compare favorably with those generated by SWISS-MODEL and 3D JigSaw (within 0.2 Å RMSD). The average PROTEUS2 prediction takes ∼3 min per query sequence. The PROTEUS2 server along with source code for many of its modules is accessible a http://wishart.biology.ualberta.ca/proteus2

    An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

    Get PDF
    Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays

    PPT-DB: the protein property prediction and testing database

    Get PDF
    The protein property prediction and testing database (PPT-DB) is a database housing nearly 30 carefully curated databases, each of which contains commonly predicted protein property information. These properties include both structural (i.e. secondary structure, contact order, disulfide pairing) and dynamic (i.e. order parameters, B-factors, folding rates) features that have been measured, derived or tabulated from a variety of sources. PPT-DB is designed to serve two purposes. First it is intended to serve as a centralized, up-to-date, freely downloadable and easily queried repository of predictable or ‘derived’ protein property data. In this role, PPT-DB can serve as a one-stop, fully standardized repository for developers to obtain the required training, testing and validation data needed for almost any kind of protein property prediction program they may wish to create. The second role that PPT-DB can play is as a tool for homology-based protein property prediction. Users may query PPT-DB with a sequence of interest and have a specific property predicted using a sequence similarity search against PPT-DB's extensive collection of proteins with known properties. PPT-DB exploits the well-known fact that protein structure and dynamic properties are highly conserved between homologous proteins. Predictions derived from PPT-DB's similarity searches are typically 85–95% correct (for categorical predictions, such as secondary structure) or exhibit correlations of >0.80 (for numeric predictions, such as accessible surface area). This performance is 10–20% better than what is typically obtained from standard ‘ab initio’ predictions. PPT-DB, its prediction utilities and all of its contents are available at http://www.pptdb.c

    Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Get PDF
    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∼200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.NNX12AP50
    corecore